Explosions of O - Ne - Mg cores , the Crab supernova , and subluminous Type II - P supernovae

نویسندگان

  • Janka
  • W. Hillebrandt
چکیده

We present results of simulations of stellar collapse and explosions in spherical symmetry for progenitor stars in the 8–10 M⊙ range with an O-Ne-Mg core. The simulations were continued until nearly one second after core bounce and were performed with the P/V code with a variable Eddington factor solver for the neutrino transport, including a state-of-the-art treatment of neutrino-matter interactions. Particular effort was made to implement nuclear burning and electron capture rates with sufficient accuracy to ensure a smooth continuation, without transients, from the progenitor evolution to core collapse. Using two different nuclear equations of state (EoSs), a soft version of the Lattimer & Swesty EoS and the significantly stiffer Wolff & Hillebrandt EoS, we found no prompt explosions, but instead delayed explosions, powered by neutrino heating and the neutrino-driven baryonic wind which sets in about 200 ms after bounce. The models eject little nickel (< 0.015M⊙), explode with an energy of >∼ 0.1 × 1051 erg, and leave behind neutron stars (NSs) with a baryonic mass near 1.36 M⊙. Different from previous models of such explosions, the ejecta during the first second have a proton-to-baryon ratio of Ye >∼ 0.46, which suggests a chemical composition that is not in conflict with galactic abundances. No low-entropy matter with Ye ≪ 0.5 is ejected. This excludes such explosions as sites of a low-entropy r-process. The low explosion energy and nucleosynthetic implications are compatible with the observed properties of the Crab supernova, and the small nickel mass supports the possibility that our models explain some subluminous Type II-P supernovae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rates of Observable Black Hole Emergence in Supernovae

A newly formed black hole may be directly identified if late-time accretion of material from the base of the ejected envelope generates a luminosity that is observable in the tail of the supernova light curve. In this work we estimate the rate at which events where the black hole “emerges” in the supernova light curve can be detected with present capabilities. Our investigation is based on an a...

متن کامل

Long-duration Superluminous Supernovae at Late Times

We present nebular-phase observations and spectral models of Type Ic superluminous supernovae. LSQ14an and SN 2015bn both display late-time spectra similar to SN 2007bi, and the class shows strong similarity with broad-lined Type Ic SNe such as SN 1998bw. Near-infrared observations of SN 2015bn at +315d show a strong Ca II triplet, O I 9263, O I 1.13 μm and Mg I 1.50 μm, but no strong He, Si or...

متن کامل

Production of Lithium, Beryllium, and Boron by Hypernovae

We investigate a possible nucleosynthetic signature of highly energetic explosions of C-O cores (“hypernovae,” HNe) which might be associated with gamma-ray bursts (GRBs). We note that the direct impact of Cand O-enriched hypernova ejecta on the ambient hydrogen and helium leads to spallation reactions which can produce large amounts of the light nuclides lithium, beryllium, and boron (LiBeB). ...

متن کامل

Nucleosynthesis of Zinc and Iron-Peak Elements in Pop III Type II Supernovae: Comparison with Abundances of Very Metal-Poor Halo Stars

We calculate nucleosynthesis in core-collapse explosions of massive Pop III stars, and compare the results with abundances of metal-poor halo stars to constrain the parameters of Pop III supernovae. We focus on iron-peak elements and, in particular, we try to reproduce the large [Zn/Fe] observed in extremely metal-poor stars. The interesting trends of the observed ratios [Zn, Co, Mn, Cr, V/Fe] ...

متن کامل

Progenitors of core-collapse supernovae

Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova has converged to 8± 1M⊙, from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model depend...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006